NATURAL ISOFLAVONES

GENISTEIN

BIOCHANIN A

COUMESTROL

NATURAL GLUCOSIDES

$$\begin{split} R_1 &= R_2 = R_3 = H \ DAIDZIN \\ R_1 &= OH, R_2 = R_3 = H \ GENISTIN \\ R_1 &= R_2 = H, R_3 = COCH_3 \ 6' - O - ACETYLDAIDZIN \\ R_1 &= OH, R_2 = H, R_3 = COCH_3 \ 6' - O - ACETYLGENISTIN \\ R_1 &= R_2 = H, R_3 = COCH_2 CO_2 H \ 6' - O - MALONYLDAIDZIN \\ R_1 &= OH, R_2 = H, R_3 = COCH_2 CO_2 H \ 6' - O - MALONYLGENISTIN \end{split}$$

SYNTHESIS OF ISOFLAVONES

ALTERNATIVE SYNTHESIS OF DAIDZEIN

To delicable to

ALTERNATIVE RING-CLOSURE IN ISOFLAVONES SYNTHESIS

ALTERNATIVE SYNTHESIS OF GENISTEIN

Aryl Migration

For (I-III) a, R=R $_1$ =R $_2$ =H; b, R=R $_1$ =OMe, R $_2$ =H; c, R=R $_1$ =R $_2$ =OMe, d, R=R $_1$ = H; R $_1$ =OMe e, R=H; R $_1$ =R $_2$ =OMe, f, R=R $_1$ =OC $_7$ H $_7$; R $_2$ =OMe (IV) R=R $_1$ =H; (V) R=OH; R $_1$ =H (IV) R=OH, Daidzein; (VII) R=OH; R $_1$ =OMe, Formonometin

SYNTHESIS OF (±)-EQUOL

LARGE-SCALE SYNTHESIS OF DAIDZEIN

SYNTHESIS OF ¹³C-DMF DIETHYL ACETAL

SYNTHESIS OF ¹³C-LABELLED DAIDZEIN

SYNTHESIS OF COUMESTAN DERIVATIVES

SYNTHESIS OF OPTICALLY ACTIVE ISOFLAVONES DERIVATIVES AS ANTIESTROGEN RECEPTOR

ACKNOWLEDGEMENTS

Dr. Barbara Cacciari

Dr. Romeo Romagnoli

Dr. Giampiero Spalluto